805 research outputs found

    Observations of young low-mass stars in dense cores

    Get PDF
    In this period the first maps were made during two flights of the Kuipper Airborne Observatory (KAO) in January 1986. One of these shows extended emission at 100 and 160 microns from the dense core B35 containing the IRAS point source 05417+0907. The 160 micron emission has approximately the same extent as the NH3 (1,1) line emission at 1.4 cm, indicating close correspondence between the warm dust and the dense gas. The 160 micron map shows a previously unknown secondary maximum about 90 arcsec north of the IRAS source

    Observational and Theoretical Studies of Low-Mass Star Formation

    Get PDF
    Under this grant we have pursued studies of low-mass star formation with observations of candidate star-forming regions, (1) to determine the incidence of "infall asymmetry" in the spectral lines from very red young stellar objects; (2) to make detailed maps of candidate infall regions to determine the spatial extent of their infall asymmetry; (3) to compare the spatial and velocity structure of candidate infall regions with single dish and interferometer resolution; and (4) to begin a program of observations of starless dense cores to detect the presence or absence of infall motions

    Microwave Thermography

    Get PDF
    Contains research objectives and summary of research on one research project.National Institutes of Health (Grant 5 R01 GM20370-04)National Institutes of Health (Grant 5 SO5 RR07047-l1

    Microwave Thermography

    Get PDF
    Contains report on one research project.National Institutes of Health (Grant 5 RO1 GNI20370

    A Contracting, Turbulent, Starless Core in the Serpens Cluster

    Get PDF
    We present combined single-dish and interferometric CS(2--1) and N2H+(1--0) observations of a compact core in the NW region of the Serpens molecular cloud. The core is starless according to observations from optical to millimeter wavelengths and its lines have turbulent widths and ``infall asymmetry''. Line profile modeling indicates supersonic inward motions v_in>0.34 km/s over an extended region L>12000AU. The high infall speed and large extent exceeds the predictions of most thermal ambipolar diffusion models and points to a more dynamical process for core formation. A short (dynamic) timescale, ~1e5 yr=L/v_in, is also suggested by the low N2H+ abundance ~1e-10.Comment: 11 pages including 2 figures. Accepted for publication in the Astrophysical Journal Letter

    Tidal Disruption of Protoclusters in Giant Molecular Clouds

    Full text link
    We study the collapse of protoclusters within a giant molecular cloud (GMC) to determine the conditions under which collapse is significantly disrupted. Motivated by observations of star forming regions which exhibit flattened cloud structures, this study considers collapsing protoclusters with disk geometries. The collapse of a 10^3 Msun protocluster initially a distance of 2-10 pc from a 10^3 - 10^6 Msun point mass is numerically calculated. Simulations with zero initial relative velocity between the two are completed as well as simulations with relative velocities consistent with those observed in GMCs. The results allow us to define the conditions under which it is safe to assume protocluster collapse proceeds as if in isolation. For instance, we find the collapse of a 10^3 Msun protocluster will be significantly disrupted if it is within 2-4 pc of a 10^4 Msun point mass. Thus, the collapse of a 10^3 Msun protocluster can be considered to proceed as if in isolation if it is more than ~ 4 pc away from a 10^4 Msun compact object. In addition, in no portion of the sampled parameter space does the gravitational interaction between the protocluster disk and the massive particle significantly disperse the disk into the background GMC. We discuss the distribution of clusters of young stellar objects within the Perseus and Mon R2 star forming regions, which are consistent with the results of our simulations and the limitations of our results in gas dominated regions such as the Orion cloud.Comment: 12 pages, 6 figures, Accepted for publication in Ap
    corecore